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CONSTRAINED MAXIMUM LIKELIHOOD ESTIMATORS 
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ABSTRACT 

Recently Kundu(1993a) has proposed a non-linear 

eigenvalue method for finding the maximum likelihood 

estimators  (MLE)  of the  parameters  of  undamped 

exponential signals.  It is known to perform better 

than the previously existing methods, like FBLP of Tufts 

and Kumaresan (1982) or Pisarenko's method  (Pisarenko; 

1972), in the sense of lower mean squared errors.   The 

solution in  general   depends on the roots of a 

polynomial  equation.    It is  observed  that  the 

coefficients of the polynomial   exhibit   a certain 

symmetry.  Since it is known (Crowder; 1984)  that the 

MLE with constraints   is more efficient than the 

unconstrained MLE, modified maximum likelihood method 

has been suggested to estimate the parameters under 

these symmetric constraints.  It is observed in the 

simulation study that the mean squared errors  of the 

constrained MLE are closer to the Cramer-Rao lower 

bound than the ordinary MLE in almost  all  the 
situations. 

Key Words  and Phrases:    Constrained MLE,  Multiple 
Sinusoids, Prony's Algorithm, EVLP, FBLP. 



1.  INTRODUCTION 

In signal processing detecting the number of 

signals and estimating the parameters of the signals 

are very important problems. In this article, we 

consider the estimation of the following exponentially- 

undamped sinusoidal signal with additive noise, i.e. 

M     ^wkn 
y„ = E av e    + en n = 1,...,N       (1.1) 
nk=l K n 

Here a, are unknown complex numbers, o>k e  [0,2rc)  are 

unknown radian freguencies and i ='^::T.  Tne  en 
are 

independent identically distributed  (i.i.d.)  complex 

valued error random variables such that E(<= ) = 0 and 

E|en|
2 = cr2 .        a. =   (alf . .. ,0^) ,     a     =  (o^ , . . . ,u^)  are 

unknown and the «, 's are assumed to be distinct.  The 

problem is to estimate the unknown parameters, given a 

sample of size N. Here we assume that M, the number of 

signals, is known. 

Furthermore consider the following non-linear time 

series regression model; 

L 
yn = ■ E   tAk cos(<okn)   + Bk sin(o>kn)]   + €=n 

JC==X 

n =  1,...,N     (1.2) 

Here A, and B,are real amplitudes and "k'
s are 

freguencies and e 's are i.i.d. real valued random 

variables with mean zero and finite variance a . 

Observe that the model (1.2) can be written as a 

special case of the model (1.1). 

The problem of estimating the parameters of 

complex sinusoids in noise has received considerable 

attention in the past several years, /see for example 

Kay and Marple (^981 )and Kay; (l988jchapter  13^  in the 



Electrical Engineering literature where as a reasonable 

amount of work has been done starting with the work of 

Hannan (1971) and Walker (1971),in the Statistics 

literature also, {see for example Rice and Rosenblatt; 

(i 1988)and Kundu f 1993blfor estimating real sinusoids. 

Under the normality assumptions on the error term, the 

maximum likelihood estimators (MLE) of a  and a are same 

as the non-linear least squares estimators obtained by 

minimizing 

N 
RN(a,e) = E 

~ ~  n=l n  k=l * 

2 
(1-3) 

with respect to ö = (0 , ...,ö ) and a =  (a-,...,aM). 

The solution obtained from (1.3) is a consistent 

estimator of co and a   (Mitra and Kundu; 1993 or Rao and 

Zhao (1993)). Unfortunately it is known that (Smyth; 

1985, Kundu; 1989) the general purpose algorithms such 

as Gauss Newton, Newton Rapson or their variants often 

have great difficulty in converging to the optimum 

solution. Recently Kundu (1993a) gives an efficient 

iterative procedure to obtain the MLE of w,  the 

asymptotic stability of the procedure can be found in 

Kundu (1994). 

In estimating the frequencies, the methods like 

the Pisarenko's method (Pisarenko; 1972), Forward 

Backward Linear Prediction (FBLP) of Tufts and 

Kumaresan (1982), EquiVariance Linear Prediction (EVLP) 

discussed in Bai, Krishnaiah and Zhao (1986) or -Rao 

(1988), are based on the classical methods of Prony 

(1795). The basic MLE Prony method goes back to Osborne 

(1975). That method was further developed and 

investigated by Osborne and Smyth (1991, 1994) and Kahn 

et. al. (1992).  Bai, Rao and Chow  (1989)  refine the 



EVLP estimators to produce efficient estimators of the 

frequencies. The solution in general depends on the 

roots of a polynomial equation. It is observed that 

the coefficients of the polynomial equation satisfy 

some symmetric constraints. Since it is known 

(Crowder; 1984) that the constrained MLE has lower mean 

squared error then the unconstrained MLE, we introduce 

constrained MLE for this problem and compare it with 

the existing methods using simulation. Observe that 

once we obtain the non-linear parameters the linear 

parameters can be obtained using the simple linear 

regression technique j^Kundu( 1994), 

The rest of the paper is organized as follows, we 

provide the Pisarenko's method in Chapter 2. The 

Modified Prony algorithm is given in Chapter 3, Chapter 

4 contains the Constrained maximum likelihood 

procedure. Some Numerical results are provided in 

Chapter 5 and we draw conclusions from our results in 

Chapter 6. In the Appendix we provide some theoretical 

justification of the convergence of the numerical 

procedures under the assumptions of independent and 

identically distributed error random variables. 

2.  PISARENKO'S METHOD 

Prony (1795) suggested a method of solving the 

non-linear estimation problem. Many standard texts on 

numerical methods outline this algorithm (Barrodale 

and Olesky (1981), Froberg (1969)). The algorithm can 

be extended to the noisy case as follows : 

Suppose that the vector g = (g ,....,gM)' is 

such that 
M     M     ~iaM 

g0 + gx z + ••• + gM z = gM.n(z - e  
J)    (2.1) 



then for any n > M+l 

M M 

J0
gk yn-k  k-Q-k -n-k = E g> «„_, (2.2) 

where the right hand side of (2.2) is a function of 

error only. The coefficients g. are estimated by 

minimizing 

N   M 
E I E g> y. k ^n-k' (2.3) 

n=M+l k=0 

subject to the condition |g| =1.   Such a method of 

estimation is known as the Pisarenko's method, (also 

named as EVLP method by Bai, Krishnaiah and Zhao/ 

(l986) . 

Now write 

T 

YM- N-M 

rM+l 

N 

(2.4) 

and R = T T, here '* ' denotes  the  complex conjugate 

transpose of a matrix or of a vector. Therefore the 

estimator of g can be obtained by minimizing g Rg such 
*      ~   A ~  ~ 

that g g = 1. If g is the estimator of g so obtained 

construct the polynomial eguation 

A     A A    M 
go + gl z + • ' *+ gM z  = ° (2.5) 

obtain solutions in the form of 

-1ÜJ. 

P±  e 
■lco. 

' PM e 
M with p. > 0 

for i 1,2,... M. (2.6) 

and take co , 'WM as estimators of w. , . . . ,co...  It is l     M 



shown in Bai, Krishnaiah and Zhao (1986) that w is a 

consistent estimate of co with a convergence rate of 

0 (N~1//2). It is observed that  [Rao and Zhao; (1993} 

Mitra and Kundu,^ 1993} co obtained by minimizing  (1.2) 

is a consistent estimator of a> with a convergence rate 

of 0 (N-3/2).  On the other hand the FBLP of Tufts and 
P 

Kumaresan (1982) may not provide consistent estimator 

of co (Rao; 1988). 

3.  MODIFIED  PRONY  ALGORITHM 

A modification to Prony's algorithm have been 

considered by Marple (1979,1987), using the fact that 

the roots of the polynomial eguation (2.5) should be of 

unit modulus. Consider the polynomial equation 

P(z) go + glZ + ... + gM z M 0 (3.1) 

with z, , k = 1,....M as its roots. Since the z, 's 

are of unit modulus, we have z, = z, . Therefore the 

polynomial P(z) and 

R(z) = gM + g »M-l z +...+ g z 3o 
M (3.2) 

have the same roots, Hence 

>M 

gM_ M-K 

K = 0, . . . ,M 

or 

'K 

g  ,1/2 
12. 

'M-K 

-.1/2 
'M K = 0,...M (3.3) 

If we define 



bK = % 
_ K = 0,...M      (3.4) 

then it is easy to see that b„ = bM_K ;K = 0,...M. 

Thus (2.2) can be written as; if y. satisfies (1.1), 

then there exists a vector b = (bQ/ . . ., b„)  such 

that bn = b.r , ; k = 0,. .., M and 
K M—JC 

M M 
Z bk Yn-k = Z bk £n-k (3*5) k=0 K n K  k=0■   n K 

for any n > M+l. 

4.  CONSTRAINED MLE 

Bresler and Macovski (1986) and Kumaresan, Scharf 

and Shaw (1986) considered the maximum likelihood 

approach using similar conditions on-the coefficients. 

They transformed the problem to a constrained quadratic 

minimization problem and solved it iteratively using 

some standard computer packages. No proof of 

convergence was provided in these papers. In this 

section we modify the MLE procedure of Kundu (1993a) 

using similar conditions on the coefficients. We 

transform the problem to a non-linear eigenvalue 

problem and solve  it iteratively. 

The model  (1-1)  can be written  in  the 

following matrix form; 

Y = A(a>)oi + E (4.1) 

where  Y = (y1,.../yN), a.    = (c^,... ,0^),     <o 

~ T        ~ ■    ~ («,...,&>)  and E =  (<=,...,<=).    A(oo)  is  a NxM 

matrix and its (p,q)th element is e    / p = 1,...,N, q 



= 1,...,M. 

Therefore (1.3) can be written as 

2 
R^cc, co) = |Y - A(to)a| (4.2) 

Here the linear parameters a. are separable from the 

non-linear parameters to. For a fixed value of co, the 

minimization of R^ with respect to a is a simple linear 
A 

regression problem.  The solution of a(<o) is 

a(co) = (A*(to) A(w))"1 A*(co)Y (4.3) 

Substituting back a (to) in (4.2) and denoting Q(w) = 

R^(ct,aj) we obtain 

Q(to) = Y*(I  -  PA)Y (4.4) 

where P, = A(A*A)-1A is the projection operator in 

the range space spanned by the columns of the matrix A. 

Therefore the MLE of to can be obtained by minimizing 

(4.4) , w.r.t. co. 

Consider the NxN-M matrix X of the following form: 

'M 

0 

0 

o 

?M 

0 

0 

0 

'M 

(4.5) 

From  (2.2)  it  follows   X n     =     0,  where 



* 
(Ey ,...,Ey ).  This implies  X A(«)  = 0,  i.e.  the 

columns of A are orthogonal to the rows of X and I 

P = P = X(X*X)-1X*.  Therefore minimizing Y (I-PA)Y 

~  *   ~ 
with respect to os  is eguivalent to minimizing Y Px Y 

with respect to g = (g /...,<?«) • 
A 

Let g  be  the  vector  that  minimizes 

Y*X(X*X) 1X*Y.  Then the MLE  of a>  can be obtained 

by solving the polynomial equation as described in 

(2.5) and (2.6) {see Kundu; (l993a). Similarly the 

constrained MLE of co can be obtained by minimizing 

(4.6) 

ic "k        —1  * 
Q(g) =  Y X(X X)  X Y 

such that g g = 1  and g, = 5M_k /' k = 0, — ,M. 

Then the estimator of a  can be obtained by solving the 

polynomial equation (2.5). Observe that the roots of 

the polynomial equation in the constrained case will be 

of the form 
A A 

-ic°l -iwM ,. _, e ,...,e (4.7) 

instead of (2.6). 
The constrained minimization can be done as 

follows. The matrix X in the constrained case can be 

written as X = [x , ...,x  ] where x. is of the form [ 

0/9/° ]•  Let u and v denote the real  and imaginary 

parts of X respectively. Assuming M is odd for 

brevity and g, = c, - idk for k = 0, 1, —, (M-l)/2. 

Then X can be written as 

(M-l)/2 
X=V(cU+idV) (4.8) 

a=0 



where U , V ; a.  = 0,1, a.       a. 
M-l are NxN-M matrices 

with entriesO  and  1.  The minimization of Q(g)  = 

Y*X(X*X)~1X*Y such that  g g = 1  and gv = 5M-k
;  k = 

>k 

0,...,M is equivalent to minimize 

Q(c, d) + X (cTc + dTd - 1) (4.9) 

T  _ with respect to c, d and X.  Here  we   denote c 

/       °M-1,    -.T    ,,     dM-l.    n. ,v 
(CQ,..., -~2~) ,        d =   (dQ,..., ~2~) ,        Q(c,    d) 

Y*X(X*X)-1X*Y, where  X is of the form (4.8) and X  is 

the Lagrange multiplier.   If we  differentiate  (4.9) 

with respect to c and d, we obtain a matrix equation of 

the form 

Dtc^d7) +  2X = 0 (4.10) 

Here D is a M+lxM+1 matrix. The matrix D can be written 

in a partitioned form as : 

D 
B 

B 

C 
(4.11) 

,  r,  ~ -. I  M+l      M+l      .   . __    . where A,B,C are all —5— x —TJ— matrices.  We have 

Ajk = Y*Uj(X*X)"
1U*Y - Y*X(X*X)"1(UjUk+ U^U..)(X*X)

_1X*Y 

+ Y*uk(x*x) ^-UTY  j,k = 0,1, M-l (4.12) 

•k "k       —1     Jc ic k       —1        T1 T *       —1     * 
Bjk  =   -iY  Uj(X  X)   XVkY-iY  X(X  X)   X(U ^-V^Uj) (X  X)   XX  Y 

.    * *     -1   T . M-l 
+   lY  Vk(X  X)   ""UjY 3,k  =   0,1,...   -2- (4.13) 

10 



Cjk = Y*Vj(X*X)"
1V*Y-Y*X(X*X) X(V^Vk + V^Vj)(X*X) VY 

*    *  -1 T 
+ Y V. (X X)  V^Y j,k = 0,1, 

M-l (4.14) 

T   T 
Premultiplying the left hand side of (4.10) by(c , d ), 

we obtain 

[cT, dT] D(cT,dT) 
d 

+ 2X  =0 (4.15) 

It can be easily seen that 

[cT, dT] D(c?,d?) = 0 (4.16) 

which implies X = 0.   Therefore the constrained 

minimization of Q(g) is equivalent to solving a matrix 

equation of the form 

c 

D(c7 ,d'r) = 0 s.t. cTc + dTd = 1    (4.17) 

Similarly when  M   is  even,   c (co' • • • 'C\f) ' 

do' >dM 
-1 

and D can be partitioned as 

D A   B 
* 

B    C 

2 

(4.18) 

M       M      M , ,   M  M   M 
Here A, B, C are ^+1x^+1, ^  +1 x ^/ 2 x 2' 

matrices respectively. The (j,k)th element of A, B, 

or C is same as before with appropriate ranges. Note 

that D is a real symmetric matrix in both the cases, 

and we need to solve a matrix equation of the form 

D(x)x = 0    s.t. Ixll = 1 (4.19) 

11 



'■■fr\ 

m 
■■-■1?. 

This  is a nonlinear  eigenvalue  problem.   x 

satisfying (4.19) should be an eigenvector 

corresponding to the zero eigenvalue of the matrix 

D(x).  We suggest the following iterative technique 

similar to that of Osborne (1975) and Kundu (1993a) to 

solve (4.19) : 

(D(xk) - \k+1I)xk+1 = 0.    Ilxk+1ll = 1     (4.20) 

where Xk+1 is the eigenvalue closest to zero of D(x ) 

and xk+1 is the corresponding normalized eigenvector. 

The iterative process should be stopped when A IS 

small corresponding to IIDII. 

The algorithm has the following form : 

Step 1:  Set an initial value x  and normalize 

it, i.e. 

x1 = xV'lx1« ;       i = 1. 

Step 2:  Calculate matrix D(x ) 

Step 3:  Find the eigenvalue X    of D(x ) 

closest to zero and normalize  the 

corresponding eigenvector x 

Step 4:  Test the convergence by checking if 

|X1+1| < e IIDII 

Step 5: If the test in 4 fails, i:= i+1 and go to 

Step 2. 

12 



5.  NUMERICAL  EXPERIMENTS: 

We performed some numerical experiments mainly to 

compare the performances of the different methods for 

finite samples. All these simulations are done using 

the IMSL (1984) random deviate generator. We consider 

the following two models: 

Model 1. 

„ n     1.0m , o n  2.0nn , 
y  = 2 .0 e      + 3 .0 e      + e Jn n 

n = 1,...,N.        (5.1) 

Model 2. 

y  = 1.0 cos(2.0n) + 1.0 sin(2.0n) + e=n      (5.2) 

For Model 1,-e are i.i.d. complex valued normal random 

variables with mean zero and standard deviation cr    for 

both the real  and imaginary parts.   The real and 

imaginary parts are  taken  to  be  independently 

distributed.  For Model 2 e are  i.i.d.  real valued n 
random variables with mean zero and standard deviation 

a. For different values of N and a, one thousand 

different data sets were generated. Numerical results 

are observed for sample sizes N = 20,30,40,50 and a = 

.01,-1 and .5. Observe that our method can be applied 

even if the errors are stationary random variables. 

For Model 2, we also consider when e are moving 

average error of the form; 

en = en + -5 en-l (5*3) 

where e 's are i.i.d. normal random variables with mean 
n 

zero and standard deviation a = .1 and N = 20, 30, 40 

and 50. 

For each data set, we computed the ordinary MLE 

(MLE) as described in Kundu (1993a), constrained MLE as 

in Section 4 (CMLE) and as  in Bresler and Macovski 

13 



(CMLEBM), the FBLP as in Tufts and Kumaresan (1982) and 

the modified EVLP (EVLP) as in Bai, Rao and Chow 

(1989). For the MLE and CMLE we use £ = 10~ , the 

ordinary EVLP estimator as the starting value and |D| 

to be the largest eigenvalue of the matrix D. For 

CMLEBM, we use the same initial value as MLE or CMLE 

and 7 steps iterations in all the cases. Observe that 

the stopping rule of MLE or CMLE is quite different 

than that of CMLEBM. It is observed that for MLE or 

CMLE the iteration converged in 7 steps in all the 

cases for both the models, with the above stopping 

criterion. Therefore to have a reasonable comparison 

of MLE or CMLE with CMLEBM we use 7 steps iterations 

in all the cases in both the models for CMLEBM also. 

The mean estimates of the frequencies and their average 

mean squared errors (MSE) over one thousand 

replications are reported. 

Observe that we write (5.2) in the form of (1.1) 

with 03 = 2.0 and w = -2.0. We estimated <s> and o>2 by 

the different methods as described above. In all our 

simulations for all the methods the two roots of (2.5) 

came in the complex conjugate form, we obtained the 

estimator of w from that. We also obtain the 

estimators of the linear parameters from (4.3) in all 

the cases. 
We reported all the results in Table 1-4 for Model 

1 and in Table 5 for Model 2 when the errors are i.i.d 

and when the errors are from (5.3), the results are 

reported in Table 6. In each table we also put the 

Cramer-Rao lower bounds (CRLB) for comparison. 

14 



Table la 
Model 1 

N = 20, a  = .01 

Method   \    co to a. a. 
*       1 Z 1 2 

PARAMETERS   1.00000   2.00000   2.00000 3.00000 
(CRLB)       (.194E-3) (.129E-3) (.224E-2) (.224E-2) 

MLE        1.00007   1.99989   2.00025 3.00010 
(.275E-3) (.201E-3) (.246E-2) (.247E-2) 

CMLE        1.00000   1.99997   2.00012 3.00005 
(.215E-3) (.146E-3) (.235E-2) (.242E-2) 

CMLEBM       1.00001   1.99997   2.00010 3.00005 
(.223E-3) (.152E-3) (.240E-2) (.242E-2) 

FBLP        1.00014   2.00004   3.99996 5.50002 
(.560E-3) (.220E-3) (.287E-2) (.277E-2) 

EVLP        0.99982   2.00004   2.00011 3.00040 
(.586E-3) (.217E-3) (.304E-2) (.280E-2) 

Table lb 

N = 20, a =   .1 

Method   \    co w a.                        a. 
i Z 1               2 

PARAMETERS   1.00000 2.00000 2.00000   3.00000 
(CRLB)       (.194E-2) (.129E-2) (.224E-1) (.224E-1) 

MLE        1.00009 1.99983 2.00044   3.00007 
(.280E-2) (.197E-2) (-240E-1) (.251E-1) 

CMLE        1.00000 1.99992 2.00010   3.00005 
(.217E-2) (.149E-2) (.230E-1) (.244E-1) 

CMLEBM       1.00001 1.99991 2.00010   3.00013 
(.225E-2) (.149E-2) (.230E-1) (.247E-1) 

FBLP        2.00001 3.49990 3.99996   5.50002 
(.531E-2) (.230E-2) (.311E-1) (.288E-1) 

EVLP        2.00007 3.49996 3.99995   5.50001 
(.521E-2) (.225E-2) (.312E-1) (.282E-1) 

15 



Table lc 
N = 20, a  = .5 

Method  \   <o4       coz a±        a, 

PARAMETERS   1-00000   2.00000 2.00000   3.00000 
(CRLB)       (.968E-2) (.645E-2) (.112E-0) (.112E-0) 

MLE        1.00007   1.99989 2.00025   3.00010 
(.176E-1) (.991E-2) (.201E-0) (.182E-0) 

CMLE        1.00029   1.99906 1.98828   2.99803 
(.108E-1) (.726E-2) (.123E-0) (.119E-0) 

CMLEBM       1.00054   1.99891 1.98650   2.99690 
(.113E-1) (.754E-2) (.132E-0) (.118E-0) 

FBLP        0.98911   2.01315 1.85643   2.88781 
(.391E-1) (.215E-1) (.340E-0) (.261E-0) 

EVLP        0.98619   1.99715 1.76575   2.88092 
(.398E-1) (.229E-1) (.324E-0) (.254E-0) 

Table 2a 
Model 1 

N = 30, a =   .01 

a. 
2 Method   \    co        co        a. N       i 2 1 

PARAMETERS   1.00000 2.00000 2.00000 3.00000 
(CRLB)       (.105E-3) (.703E-4) (.182E-2) (.182E-2) 

MLE        1.00007 1.99989 2.00025 3.00010 
(.201E-3) (.111E-3) (.202E-2) (.219E-2) 

CMLE        1.00001 1.99999 2.00016 2.99916 
(.140E-3) (.712E-4) (.193E-2) (.202E-2) 

CMLEBM       1.00001 1.99998 2.00014 2.99995 
(.146E-3) (.739E-4) (.193E-2) (.201E-2) 

FBLP        0.99983 2.00014 1.99996 3.00190 
(.299E-3) (.250E-3) (.270E-2) (.251E-2) 

EVLP        0.99984 1.99978 2.00011 3.00040 
(.316E-3) (.276E-3) (.281E-2) (.277E-2) 
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Table 2b 

N = 30, a  = .1 

Method 

PARAMETERS 
(CRLB) 

MLE 

CMLE 

CMLEBM 

FBLP 

EVLP 

\ w CO a. a. 
1              Z 1               2 

1.00000   2.00000 2.00000 3.00000 
(.105E-2) (.703E-3) (.182E-1) (.182E-1) 

1.00021   2.00095 2.00011 2.99981 
(.201E-2) (.991E-3) (.231E-1) (.243E-1) 

0.99989   1.99989 2.00009 2.99891 
(.139E-2). (.722E-3) (.187E-1) (.233E-1) 

1.00014   1.99982 2.00009 2.99959 
(.145E-2) (.741E-3) (.191E-1) (.211E-1) 

1.00011   2.00019 1.99563 2.99856 
(.293E-2) (.199E-2) (.281E-1) (.279E-1) 

0.99983   1.99776 2.01350 2.98708 
(.310E-2) (.195E-2) (.291E-1) (.277E-1) 

Table 2c 
N = 30, a =   .5 

Method 

PARAMETERS 
(CRLB) 

MLE 

CMLE 

CMLEBM 

FBLP 

EVLP 

\ w CO 
1 2 

1.00000 2.00000 
(.527E-2) (.351E-2) 

0.99987 2.00012 
(.880E-2) (.481E-2) 

1.00091 1.99909 
(.739E-2) (.412E-2) 

1.00094 1.99913 
(.743E-2) (.416E-2) 

0.98763 1.99763 
(.268E-1) (.175E-1) 

0.98866 1.98847 
(.276E-1) (.187E-1) 

a. 
l 

2.00000 
(.913E-1) 

2.00011 
(.991E-1) 

2.04309 
(.920E-1) 

2.04420 
(.928E-1) 

2.01341 
(.299E-0) 

1.81846 
(.306E-0) 

a. 
2 

3.00000 
(.913E-1) 

3.00121 
(.972E-1) 

2.99037 
(.921E-1) 

2.99817 
(.923E-1) 

2.97865 
(.239E-0) 

2.78936 
(.249E-0) 
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Table 3a 
Model 1 

N = 40, a  = .01 

Method   \    w±        wz a±                      «2 

PARAMETERS   1.00000   2.00000 2.00000 3.00000 
(CRLB)      (.685E-4) (.456E-4) (.158E-2) (.158E-2) 

MLE        1.00003   1.99948 2.00012 2.99919 
(.891E-4) (.591E-4) (.189E-1) (.211E-1) 

CMLE        1.00001   1.99998 2.00091 2.99960 
(.793E-4) (.495E-4) (.176E-1) (.173E-1) 

CMLEBM       1.00001   1.99998 2.00019 2.99987 
(.806E-4) (.505E-4) (.176E-1) (.179E-1) 

FBLP        1.00017   2.00011 1.99956 2.99281 
(.248E-3) (.199E-3) (.199E-2) (.210E-2) 

EVLP        0.99899   1.99981 1.99962 2.99981 
(.256E-3) (.196E-3) (.201E-2) (.202E-2) 

Table 3b 

N = 40, a =   .1 ■-=- 

Method   \    co        W2        ai a. 
2 

-':>W CMLE 
'■<■ y 

>v*;-i CMLEBM 

PARAMETERS   1.00000 2.00000   2.00000 3.00000 
(CRLB)      (.685E-3) (.456E-3) (.158E-1) (.158E-1) 

MLE        0.99979 2.00091   1.99911 2.99891 
(.911E-3) (.685E-3) (.210E-1) (.206E-1) 

1.00012 1.99981   2.00889 2.99698 
(.793E-3) (.496E-3) (.175E-1) (.163E-1) 

1.00014 1.99987   2.00886 2.99789 
(.801E-3) (.499E-3) (.181E-1) (.176E-1) 

FBLP        0.99923 2.00178   1.99203 3.00879 
(.269E-2) (.888E-3) (.271E-1) (.259E-1) 

EVLP        1.00076 1.99786   2.00171 3.00932 
(.275E-2) (.885E-3) (.275E-1) (.261E-1) 
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Table   3c 
N  =  40,   a =   .5 

■■■A 

Method       \ 

PARAMETERS 
(CRLB) 

MLE 

CMLE 

CMLEBM 

FBLP 

EVLP 

1.00000 
(.342E-2) 

0.99764 
(.423E-2) 

1.00083 
(.395E-2) 

1.00089 
(.396E-2) 

1.09805 
(.218E-1) 

1.00165 
(.211E-1) 

CO 
2 

2.00000 
(.228E-2) 

2.00120 
(.298E-2) 

1.99920 
(.248E-2) 

2.00011 
(.255E-2) 

2.00128 
(.936E-2) 

1.99765 
(.989E-2) 

a. 

2.00000 
(.790E-1) 

1.99910 
(.899E-1) 

2.03879 
(.842E-1) 

2.03563 
(.851E-1) 

2.02451 
(.311E-0) 

1.91876 
(.299E-0) 

a 
z 

3.00000 
(.790E-1) 

3.00019 
(.911E-1) 

2.98082 
(.817E-1) 

2.99914 
(.815E-1) 

3.01395 
(.231E-0) 

2.88976 
(.241E-0) 

Table 4a 
Model 1 

N = 50, a =   .01 

Method 

PARAMETERS 
(CRLB) 

MLE 

CMLE 

CMLEBM 

FBLP 

EVLP 

\ OJ CO a a 
i 2 1 2 

1.00000 2.00000   2.00000 3.00000 
(.489E-4) (.326E-4) (.141E-2) (.141E-2) 

0.99998 1.99988   2.00009 2.99999 
(.601E-4) (.380E-4) (.181E-2) (.178E-2) 

1.00000 1.99999   1.99998 2.99991 
(.570E-4) (.320E-4) (.171E-2) (.140E-2) 

0.99999 1.99999   2.00001 2.99990 
(.575E-4) (.326E-4) (.176E-2) (.141E-2) 

1.00011 1.99920   1.99931 3.00016 
(.158E-3) (.139E-3) (.189E-2) (.189E-2) 

0.99994 2.00010   2.00078 3.00001 
(.159E-3) (.136E-3) (.198E-2) (.198E-2) 
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Table 4b 

N = 50, a  = .1 

Method   \   a>± wz       o^        <*2 
PARAMETERS   1.00000 2.00000 2.00000 3.00000 
(CRLB)      (.489E-3) (.326E-3) (.141E-1) (.141E-1) 

MLE        1.00012 2.00088 1.99962 3.00019 
(.710E-3) (.389E-3) (.191E-1) (.199E-1) 

CMLE        0.99992 1.99993 2.00769 2.99905 
(.670E-3) (.335E-3) (.167E-1) (.159E-1) 

CMLEBM       1.00056 2.00091 2.00239 3.00317 
(.675E-3) (.340E-3) (.170E-1) (.169E-1) 

FBLP        0.99918 2.00098 2.00270 3.00349 
(.238E-2) (.790E-3) (.262E-1) (.244E-1) 

EVLP        1.00072 1.99911 2.00252   3.00013 
(.244E-2) (.787E-3) (.251E-1) (.249E-1) 

Table 4c 
N = 50, a  = .5 

2 Method \    co        co        a 
X Z X 

PARAMETERS 1.00000 2.00000   2.00000 3.00000 
:.Ji                           (CRLB) (.245E-2) (.163E-2) (.707E-1) (.707E-1) 

-3J            MLE 1.00569 2.00253   1.99987 2.99911 
*;i (.375E-2) (.218E-2) (.849E-1) (.811E-1) 

^           CMLE 0.99971 1.99969   2.03347 2.99546 
1 (.327E-2) (.198E-2) (.830E-1) (.710E-1) 

~-          CMLEBM 0.99976 2.00021   1.99281 2.99786 
(.335E-2) (.205E-2) (.833E-1) (.707E-1) 

FBLP 1.00198 1.99875   2.00320 3.00237 
m (.190E-1) (.788E-2) (.303E-0) (.225E-0) 

W$                             EVLP 1.00880 2.00210   1.91642 2.95185 
v£ (.198E-1) (.779E-2) (.288E-0) (.239E-0) 
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Table 5a 
Model 2 

a = .01, co = 2.0 

Sample Size\ 20 30 40       50 
Methods 

CRLB      2.00000 2.00000 2.00000    2.00000 
(.387E-3) (.211E-3) (.137E-3) (.980E-4) 

MLE       1.99989 1.99996 1.99995    1.99989 
(.401E-3) (.311E-3) (.201E-3) (.123E-3) 

CMLE      1.99996 1.99997 1.99998    1.99999 
(.390E-3) (.219E-3) (.142E-3) (.988E-4) 

CMLEBM    1.99998 1.99999 1.99998    1.99998 
(.390E-3) (.220E-3) (.144E-3) (.995E-4) 

FBLP      1.99987 1.99990 1.99989    1.99995 
(.498E-3) (.437E-3) (.289E-3) (.241E-3) 

EVLP      1.99988 1.99989 1.99999    1.99998 
(.500E-3) (.431E-3) (.299E-3) (.238E-3) 

a = .1, co = 2.0 

Sample Size\ 20 30 40 50 
Methods 
CRLB      2.00000 2.00000 2.00000 2.00000 

(.387E-2) (.211E-2) (.137E-2) (.980E-3) 

MLE       1.99983 1.99989 1.99991 2.00001 
(.403E-2) (.314E-2) (.199E-2) (.119E-2) 

CMLE      1.99993 2.00061 1.99991 2.00003 
(.388E-2) (.220E-2) (.141E-2) (.990E-3) 

CMLEBM    2.00017 1.99992 1.99999 1.99992 
(.388E-2) (.224E-2) (.141E-2) (.994E-3) 

FBLP      2.00011 2.00032 1.99994 1.99988 
(.501E-2) (.441E-2) (.286E-2) (.244E-2) 

EVLP      2.00023 1.99965 1.99989 1.99988 
(.497E-2) (.434E-2) (.297E-2) (.240E-3) 
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a   = 
Sample Size\ 20 

Methods 

5, a) 
30 

2.0 
40 

CRLB 

MLE 

CMLE 

CMLEBM 

FBLP 

EVLP 

2.00000 
(.194E-1) 

2.00011 
(.225E-1) 

2.00071 
(.196E-1) 

1.99901 
(.198E-1) 

2.00088 
(.401E-1) 

1.99975 
(.402E-1) 

2.00000 
(.105E-1) 

2.00004 
(.218E-1) 

1.99918 
(.109E-1) 

2.00018 
(.110E-1) 

2.00098 
(.399E-1) 

1.99955 
(.388E-1) 

2.00000 
(.685E-2) 

1.99995 
(.789E-2) 

1.99954 
(.699E-2) 

2.00001 
(.705E-2) 

1.99934 
(.303E-1) 

2.00152 
(.298E-1) 

50 

2.00000 
(.490E-2) 

1.99997 
(.588E-2) 

2.00013 
(.498E-2) 

2.00071 
(.500E-2) 

2.00108 
(.255E-1) 

1.99917 
(.266E-1) 

a  = 

Sample Size\ 20 
Methods 

CRLB 

MLE 

CMLE 

CMLEBM 

FBLP 

EVLP 

1.00000 
(.500E-2) 

1.00765 
(.559E-2) 

1.00249 
(.556E-2) 

0.96269 
(.573E-2) 

1.00987 
(.858E-2) 

1.00266 
(.846E-2) 

Table 5b 
Model 2 
.01, A = 1.0 

30 

1.00000 
(.408E-2) 

0.99696 
(.501E-2) 

1.00201 
(.457E-2) 

1.00709 
(.458E-2) 

0.99189 
(.757E-2) 

1.00196 
(.762E-2) 

40 

1.00000 
(.354E-2) 

1.00145 
(.488E-2) 

1.00158 
(.400E-2) 

0.99290 
(.428E-2) 

1.00179 
(.689E-2) 

0.99920 
(.687E-2) 

50 

1.00000 
(.316E-2) 

1.00132 
(.370E-2) 

0.99891 
(.339E-2) 

0.99852 
(.343E-2) 

1.00012 
(.521E-2) 

1.00236 
(.538E-2) 
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a = .1, A = 1. 0 

Sample 
Methods 

Size\ 20 30 40 50 

CRLB 1.00000 
(.500E-1) 

1.00000 
(.408E-1) 

1.00000 
(.354E-1) 

1.00000 
(.316E-1) 

-** •';'.• 
MLE 0.98701 

(.588E-1) 
0.97236 
(.510E-1) 

1.00561 
(.491E-1) 

1.01143 
(.390E-1) 

■■&M CMLE 1.01661 
(.561E-1) 

1.00728 
(.453E-1) 

1.01239 
(.409E-1) 

1.01226 
(.344E-1) 

CMLEBM 1.06559 
(.568E-1) 

1.02134 
(.455E-1) 

1.01187 
(.411E-1) 

1.00333 
(.341E-1) 

-Ml FBLP 1.02129 
(.784E-1) 

1.03458 
(.771E-1) 

1.00977 
(.680E-1) 

1.01949 
(.515E-1) 

-::::?3 

EVLP 0.98591 
(.800E-1) 

0.97291 
(-751E-1) 

0.99350 
(.679E-1) 

1.00196 
(.511E-1) 

": *:::- a = .5, A = 1 .0 

'~:~. Sample 
Methods 

Size\ 20 30 40 50 

CRLB 1.00000 
(.250E-0) 

1.00000 
(.204E-0) 

1.00000 
(.177E-0) 

1.00000 
(.158E-1) 

>-;': 
MLE 1.08614 

(.318E-0) 
0.94289 
(.287E-0) 

0.95671 
(.255E-0) 

1.07197 
(.243E-0) 

CMLE 1.06013 
(.292E-0) 

1.01013 
(.218E-0) 

1.01601 
(.201E-0) 

1.01038 
(.169E-0) 

•~-*:::4 

CMLEBM 1.01685 
(.309E-0) 

0.97094 
(.234E-0) 

0.99316 
(.214E-0) 

0.99043 
(.177E-0) 

FBLP 0.89376 
(.558E-0) 

1.21643 
(.534E-0) 

0.90185 
(.499E-0) 

1.10967 
(.320E-0) 

'■•-£•3 EVLP 0.88750 
(.562E-0) 

0.89921 
(.501E-0) 

0.89958 
(.468E-0) 

1.00196 
(.355E-0) 
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Table 6a 

Model 2 
Moving Average Error 

a  = .1, co = 2.0 

Sample Size\ 20 30 40       50 
Methods 

CRLB      2.00000 2.00000 2.00000 2.00000 
(.353E-2) (.193E-2) (.125E-2) (.895E-3) 

MLE       1.99998 2.00008 1.99999 2.00006 
(.399E-2) (.279E-2) (.177E-2) (.171E-2) 

CMLE      2.00015 2.00009 2.00001 1.99999 
(.372E-2) (.201E-2) (.132E-2) (.901E-3) 

CMLEBM    2.00018 2.00000 2.00006 2.00001 
(.381E-2) (.203E-2) (.140E-2) (.911E-2) 

FBLP 

EVLP 

1.99619 1.99658 1.99730 1.99641 
(.757E-2) (.652E-2) (.427E-2) (.299E-2) 

2.00610 2.00186 1.99851 2.00181 
(.779E-2) (.645E-2) („441E-2) (.315E-2) 

Table 6b 
a =   .1, A = 1.0 

Sample Size\ 20         30         40 50 
Methods _m 
CRLB      1.00000     1.00000 1.00000 1.00000 

(.460E-1) (.372E-1) (.333E-1) (.289E-1) 

MLE       0.96120     1.00961 0.99280 0.99549 
(.571E-1) (.511E-1) (.451E-1) (.377E-1) 

CMLE      0.99256     1.00113 1.00147 0.99990 
(.501E-1) (.409E-1) (.367E-1) (.291E-1) 

CMLEBM    1.00825     1.01048 1.00290 1.00034 
(.517E-1) (.411E-1) (.375E-1) (.301E-1) 

FBLP      1.03703     1.04686     1.05334 0.93356 
(.827E-1) (.811E-1) (.723E-1) (.700E-1) 

EVLP      0.94707     0.93546     1.08556 0.91957 
(.901E-1) (.859E-1) (.801E-1) (.733E-1) 
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6.  CONCLUSIONS: 

In this paper we try to estimate the parameters of 

a complex sinusoidal signal. Since any algorithm 

analyzing a complex signal can be used easily for 

analyzing the corresponding real signal (Kumaresan and 

Tufts; 1982) therefore our algorithm can also be used 

easily to analyze the corresponding real signal. It 

is well known that the estimators depend on the root of 

a certain polynomial equation. It is observed that the 

coefficients of the polynomial exhibit a certain 

symmetry. In this paper we modify the maximum 

likelihood method of Kundu (1993a) by using this 

symmetry constraints. Bresler and Macovski (1986) and 

Kumaresan, Scharf and Shaw(1986) also obtained the 

maximum likelihood estimators using this symmetry. 

Their methods are very much similar to each other (see 

Bresler and Macovski; 1986). Kumaresan, Scharf and 

Shaw (1986) suggested to use some standard constrained 

optimization packages whereas Bresler and Macovski 

(1986) obtained the explicit normal equations to solve 

this constrained problem. Since both the methods are 

almost same, we report the results of Bresler and 

Macovski (1986) only. 

The numerical results confirm the satisfactory 

performance of the CMLE algorithm. The mean estimators 

over one thousand replications show that the sinusoidal 

frequencies can be estimated unbiasedly by all the 

methods. But as far as MSE is concerned, the CMLE has 

the lowest MSE in almost all the cases. The MSE of 

the CMLE reaches the CRLB in some situations. As N 

increases or a decreases, the MSE of the estimators 

decreases. When N is large and a is small, MLE, CMLE 

and CMLEBM behave'quite similarly but for small N and 
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large value a CMLE behaves marginally better than 

CMLEBM. It is observed that using the same number of 

iterations, the CMLE has a clear advantage over CMLEBM 

in terms of MSE. 
Now to compare the computational merit of 

different iterative procedures, observe that the main 

computation involves in each iteration in inverting a 

N-M x N-M matrix X*X, where X is of the form (4.5). 

Since X*X is a banded Toeplitz matrix with bandwidth 

2M+1 the inverse computation can be done very 

efficiently (see Kumar;1985 or Kumaresan, Scharf and 

Shaw (1986)). In each iteration to calculate CMLEBM it 

is required to solve a set of M+l linear equations of 

M+l unknowns and to compute CMLE it is required to 

obtain the eigenvalues and eigenvectors of a real 

symmetric matrix of order M+l x M+l. Observe that in 

MLE computation we need to calculate the eigenvalues 

and eigenvectors of a Hermitian---matrix of order 

M+lxM+1. So CMLE involves less computation than MLE 

and CMLEBM involves less amount of computation than 

CMLE in each iteration. But usually M is very small 

compared to N in practice, so computationally it does 

not make too much of a difference in each iteration 

calculation. 
Another important problem needs discussion is the 

choice of initial value for the iterative procedure. It 

is well known that in this problem unless the starting 

values are reasonably good it is very likely that any 

iterative procedure converges to a local minimum rather 

than a global minimum. The work of Rice and Rosenblatt 

(1988) showed that there are local minimum of the sums 

of squares with respect to the co which are 0(1/N) 

apart.  Since the EVLP method gives a convergence rate 

of only 0(1/VN), one would not expect it to be good 
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enough as a starting value to find the global minimum 

to the sums of squares. Although we observed in our 

simulation study that the EVLP estimator is a 

reasonable starting point. Bresler and Macovski (1986) 

and Kumaresan, Scharf and Shaw (1986) also used the 

same starting point and obtained global convergence in 

their simulations. We observe that FBLP also can be 

used as a reasonable starting value. We perform the 

experiments with both the starting values and it is 

observed from any one of them all the algorithm namely 

MLE, CMLE or CMLEBM converge to the same global 

minimum. Only difference it makes in the number of 

iteration and that is also very marginal. It seems if 

a is not too large, then EVLP or FBLP estimator can be 

used as a initial guess to obtain the global optimum. 

For large a, it is not very easy to choose a good 

starting value without having any prior information 

about the parameters. It seems more work is needed in 

this direction. 
Observe that the symmetry constraint of the 

polynomial coefficients obtained in Section 3, is 

necessary but not sufficient for the polynomial roots 

to be on the unit circle (see Kay and Marple; 1981). 

The constrained algorithm may return real roots that 

are reciprocal of one another. But in a neighborhood 

of the true value, the symmetry constraint is 

sufficient also. We did not encounter this problem in 

our simulation study in any model. 
Recently Kahn et al (1992) has studied extensively 

the effect of different scaling factor such as |g| = 1 

or a = 1 etc. on the consistency of Prony's method.  It 
o 

is observed that different scaling factors play an 

important role in the asymptotic inference.  It can be 

exploited here also.    It seems extensive study of 
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different scaling factors is needed for this problem. 

Observe that the MLE, CMLE and CMLEBM are 

asymptotically equivalent. It is known (Mitra and 

Kundu; 1993, Rao and Zhao; 1993) that the asymptotic 

variance of the maximum likelihood estimates are equal 

to the CRLB. It is interesting to note that the 

variances for the least squares estimates are rather 

greater than the corresponding CRLB in some cases. 

Since it is a highly non-linear problem, we believe it 

is due to the poor asymptotic approximation. 

Rice and Rosenblatt (1988) observed that unless 

the frequencies are estimated with the precision 

0(N-1), the corresponding estimators of the linear 

parameters, say by (4.3), may not be consistent. So 

although MLE, CMLE or CMLEBM are computationally more 

expensive than FBLP or EVLP, it may be advisable to 

use them to obtain consistent estimates of both linear 

as well as non linear parameters. Among the MLE, CMLE 

and CMLEBM we recommend to use CMLE one since it has 

the lowest mean squared errors. 

APPENDIX 

In this Appendix we try to give some theoretical 

support for the convergence of the iterative procedure 

described in (4.20), particularly when the errors are 

independent and identically distributed. To prove the 

asymptotic stability of the iterative process (4.20), 

we need to make the assumption that the true parameter 

value (a, «) = (a , . . . ,a ,w ,. . . ,co ) is an interior 

point of the parameter space. We take M is odd for 

brevity. The proof for M even is exactly the same. 

The iterative procedure (4.20) can be expressed as 

F(c\ dk) = (ck+1, dk+1) (A.l) 
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where ck and dk are the first and the last (M+l)/2 

elements of the vector xk, i.e. xk = (c , d ), where 

ck=   frk ck    ) and (C..../C     ) K     O' < M-D/2 
dk= (dk,...,dk    ) V  O <M-i>/2 

Here the function F: K 
,M+i K 

M+i is defined implicitly 

through (4.20).  Therefore the convergence matrix F of 

the iterative process can be written as 

F(c, d) 

dc 

dc 

k+i 

dc 

dd 

k+i 

dd 

dc 

k+i 

ddJ 

ddk 

k+i 

(A.2) 

(c,d)=(c,d) 

Here x = (c, d) is the solution of (4.19) and all the 

four sub matrices are of the order  (M+l)/2 x  (M+l)/2. 

The (i,j) th element of dck+1/dck is obtained by taking 

the partial derivative of ck+i with respect to c^ and 

the other elements are also similarly defined.  Finally 

the matrix F(c, d) is obtained by evaluating all the 

elements at the point x =  (c,  d).    The sufficient 

condition that x is a point of attraction of the 

iterative process (4.20) is that the  spectral  density 

of F(c, d) is less than one (Ortega and Rheinboldt, 

1970). Writing (4.20) explicitly using the expressions 

of D from (4.11) to (4.14), we obtain 
<M-i>/2 , {M-i>/2 

E A. . ck+1 +   E B. . dk+1 
. <k+l> k+i 

=   X C. 
i 

(A.3a) 

«M-i>/2    ,        (M-i>/2 

E B?, ck+1 +  E c4 dk+1 

j=o ij j=o t-J 

. <k+i> ,k+i 
= X.  d. (A.3b) 

i  =  0,   1,...,   (M-D/2  and   ||(ck+1,   dk+1)||   =  1. 

Here  all  the matrix A,   B  and C  are  evaluated     at x       = 
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(ck, dk).  The elements of the matrix P(c,  d)  can be 

obtained by differentiating both sides of  (A.3a) and 

(A.3b) with respect to cj for 1 =  0,1,.. . , (M-l)/2 and 

evaluating at the point x yields 

A(c,  d) H£ + B(c,  d) 2E 
de dc 

+ I\(c,  d) 

dX AT — c 
dc. 

+ X dc' 

dc. 
(A.4a) 

B*(C/  d) *? + C(c,  d) *** + Si(c,  d) 
dcL dcL 

dX ^T dd* 

Til 

d + X 
dd       dc 

where R (c, d) is an (M+l)/2 vector whose jth. 

for j = 0, 1,...,(M-l)/2 is given by 

^(c, d) = 

- Y*U (X*X)_1(U7X + X*U,)(X*X)_1X*Y 
j        l       L 

- Y*U (X*X)-±(UTX + X*U.)(X*X)_1X*Y 
I j       J 

+ Y*x(x*xr1(u[x + x*ul)(x*x)~
1(u^x 

+ X*U.)(X*X)_1X*Y + Y*X(X*X)_i(UTX 

(A.4a) 

element 

+ X*U )(x*x)_1(ufx + X*U)(X X)_1X Y 

- Y*X(X*X)_1(UTX + X*U.)(X*X)_1(U*Y 

- Y*X(X*X)_1(UyX + X*U )(X*X)_±(UTY 

and the (M+l)/2 vector  S (c,  d)  is  also 

defined.  Here the ith. element of dc /dct  for i 

0,...,(M-l)/2  is obtained by taking  the  partial 

derivative of ck+1 with respect to ck and evaluating it 

(A.5) 

similarly 

at (c, d).   dd /dc  and dX /dc  are also  similarly 
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defined. 

It is easy to see that because all the quantities 

inside the parenthesis in 

Lim 
l de      de. J n  >oo «* dcL      —L 

for 1 = 0,1, •--/ (M-D/2 (A.6a) 

and { ^d
T + x *T ) = o 

de. J 
Lim 

n >oo ^ dcL      —L 

for 1=0,1, ..., (M-l)/2 (A.6b) 

both (A.6a) and (A.6b) are bounded over a compact set. 

Therefore from (A.4) we obtain 

■&:;-% 

.  f i 
lxm <   n 

n—>oo [_ 

A(c,d) 
*  A  A 

B*(c,d) 

A  A   _ 
B(c,d) 

C(c,d) 

dc; 

dc. 

dd1 

L dc -J 

+ i 
n 

A  A 
R(c,d) 

S(c,d) 

= 0 (A.7) 

The main idea of the proof of the asymptotic 

stability of the iterative process is as follows; 

(1/n) 1^(0,(1) and (l/n)SL(c,d) converges to zero vectors 

almost surely for 1 = 0,1,...,(M-l)/2 and (l/n)D(c,d), 

where 

D(c,d) = 
A(c,d) B(c,d) 

jjt  A  A A  A 

B (c,d)   C(c,d) 
(A.8) 

converges to a positive semi definite matrix with null 

space spanned by (c°,d°),  the true value of  (c,d) , 

corresponding to the true parameter value w.  Since 

ccT + ddT = 1 (A-9) 

therefore 
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VT     ^  ,^T 
c ^£ +d— =0    for 1 = '0,1/ -.-, (M-D/2. (A.10) 

dc     dci 

Since the MLE of a  converges almost surely to the true 

parameter value u,  therefore  (c,d)  converges  almost 

surely to (c°,d°).  From (A.10)  it follows that the 

vector [dc/do ,dd/dc ]T converges to a vector which is 

orthogonal to (c°,d°).    Since    Lim [dc/dc^dd/dc^]* 
n —>« A A 

belongs to the null  space of lim(l/n)D(c,d)  and the 
n—><x> 

later converges to a positive serai definite matrix with 

null space spanned by  (c°,d°),therefore[dc/dcl,dd/dcL]
T 

converges to zero vector almost surely.    The same 

-:       reasoning holds for [dc/ddL,dd/ddL]
T for 1 = 0,  1,..., 

(M-l)/2. Therefore F, the convergence matrix, 

converges to zero almost surely. This implies the 

asymptotic stability of the proposed algorithm. 

To  complete the proof we need the  following 

• '■■■ results 

^ lii i D(c,d)  = lim i E(D(c°,d°))  = DQ 

|| lim j ^(^d) =  limiEt^c0^0)) = 0 

:£ lim I- S,(c,d) = lim i E(S (c°,d°)) = 0 
■•■-:" n—>CD n—>oo 

for 1 = 0, 1, ..., (M-l)/2 (A.11) 

Here E stands for expectation and DQ  is  a  positive 

>$i       semi definite matrix with null space spanned by (c ,d ). 

~Ji       The proof of (A. 11) is very much similar to that of 

S Theorem A.l of Kundu (1994) so it is omitted. 
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